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Abstract
Over the past few years, there has been an undiminished interest on lipoprotein(a) [Lp(a)]. High Lp(a) levels 
have been proposed as an independent causal risk factor for atherosclerotic cardiovascular disease (CVD). 
The main question that remains to be answered, however, is the potential clinical benefit of Lp(a) reduction. 
This will contribute to the enrichment of our knowledge on the exact pathophysiological role of this lipo-
protein. This narrative review aims to summarize currently available data on the structure, metabolism, and 
pathogenicity of Lp(a).
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Introduction

Lipoprotein(a) [Lp(a)] was first discovered by the Nor-
wegian physician Kare Berg almost 6 decades ago. It is a 
lipoprotein particle found in plasma consisting of a low-
density lipoprotein (LDL) particle with an apolipoprotein(a) 
[apo(a)] moiety covalently bound to its apolipoprotein 
B-100 (apoB-100) component1-3. High Lp(a) levels are inher-
ited in 90% of cases4. Lp(a) exerts inflammatory, thrombotic 
and atherogenic properties and seems to represent an 
independent cardiovascular risk factor1-4. Lp(a) mediates 

atherogenesis through mechanisms linked to its LDL and 
apo(a) components and associated oxidized phospho-
lipids (OxPLs), of which Lp(a) is their major lipoprotein 
carrier5. Elevated Lp(a) plasma concentrations may predict 
the presence and progression of coronary heart disease 
(CHD), femoral and carotid artery disease6. Furthermore, 
Lp(a) levels seem to increase following acute coronary 
syndrome and percutaneous coronary intervention, due 
to its role as a positive acute-phase reactant. High Lp(a) 
levels, may predict death, myocardial infarction, stroke and 
need for revascularization in unselected populations, as 
well6. They also correlate with an amplified risk of aortic 
valve stenosis and peripheral artery disease6. Notably, 
there are currently no available treatments for potent 
reduction of high Lp(a) levels. In this narrative review, we 
present an update on the metabolism, physiology, and 
pathophysiology of Lp(a).
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Methods

Relevant studies were identified by searching MEDLINE, 
EMBASE and CENTRAL databases up to 31 August 2021 us-
ing the following terms: lipoprotein(a), apolipoprotein(a), 
Lp-PLA2, oxidized phospholipids, cardiovascular risk, 
atherogenesis, calcific aortic valve stenosis, thrombosis.  
Reference lists from these articles were also scrutinized. 

Structure and metabolism of Lp(a)

Lp(a) consists of an LDL-like particle, in which the apoB-
100 is linked by a single disulphide bridge to a unique plas-
minogen-like glycoprotein, known as apolipoprotein(a). 
(Figure) Lp(a) exerts inflammatory, oxidative, thrombotic, 
atherogenic and antifibrinolytic properties1-3.

Lp(a) synthesis occurs exclusively in the liver. Ap-
proximately 90% of circulating Lp(a) levels are inherited 
and strongly determined by a single gene, the LPA 
gene7. The LPA gene is evolutionarily derived from and 
highly homologous to the plasminogen (PLG) gene8,9. 
The PLG gene encodes 5 unique kringle domains and 
an active protease domain that is activated to plasmin 
by tPA (tissue-type plasminogen activators). The LPA 
gene, and therefore apo(a), does not contain kringles 

I-III, but does contain kringle IV (KIV), KV and a protease 
domain. This protease domain is catalytically inactive 
and, thus, it cannot be converted to a plasmin-like mol-
ecule because of amino acid substitutions at the site 
of cleavage of plasminogen activators10. Furthermore, 
because of multiple duplication events during evolution, 
the LPA gene has accumulated 10 copies of KIV that are 
each unique in amino acid sequence except for KIV2. 
KIV contains 1 copy of KIV1 and KIV3-10, but variable 
copies of KIV2, ranging from 1 to >40 on each allele. 
KIV2 repeats may differ in nucleic acid sequence but are 
identical in amino acid sequence10. Consequently, the 
different repeats of KIV2 in apo(a) account for the vari-
ous size polymorphisms of this apolipoprotein. Besides 
the apo(a) isoform size, however, other genetic variants 
have an impact on Lp(a) levels for a given isoform. Func-
tional single nucleotide polymorphisms (SNPs) within 
the LPA KIV2-encoding region (+4733G>A, +4925G>A, 
R21X, rs41272114, rs3798220) cooperate in determining 
Lp(a) variance and induce low Lp(a) concentrations11-15. 
This moderate but lifelong genetic Lp(a) reduction 
translates to noticeable CHD risk reduction, as well11,14,15. 
KIV9 contains an unpaired cysteine residue, which is 
attached by a disulfide bridge to a cysteine residue of 

Figure. Structure of lipoprotein(a). Lipoprotein(a) [Lp(a)] consists of a low-density lipoprotein-like particle, in which the apolipoprotein 
B-100 is linked by a single disulphide bond to a glycoprotein, known as apolipoprotein(a). Apolipoprotein(a) contains 10 copies of kringle 
IV (KIV), KV and a catalytically inactive protease domain. KIV contains 1 copy of KIV1 and KIV3-10, but variable copies of KIV2, ranging 
from 1 to >40 on each allele. Up to 90% of all oxidized phospholipids found in human lipoproteins are carried on Lp(a) and subjected 
to degradation by lipoprotein-associated phospholipase A2.
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tion as an anti-neoplastic protein. It may decrease the 
activation of the proteases, which are mandatory for the 
activation of matrix metalloproteinases (MMPs) and the 
subsequent activation of angiogenesis33. Moreover, many 
investigators have reported the positive role of Lp(a) in 
wound healing and tissue repair, by limiting bleeding at 
sites of injury and delivering cholesterol for cell replen-
ishment33,38,39. Indeed, Lp(a) accumulates in endothelial 
injuries, binds to several components of the vessel wall and 
sub-endothelial matrix, stimulates chemotactic activation 
of monocytes/macrophages and modulates angiogenesis. 
All these effects are mediated by apo(a)33. 

As previously described, apo(a) isoforms share sub-
stantial structural and functional homology with PLG, the 
principal component of the fibrinolytic pathway, which 
is converted to plasmin for fibrinolysis35. This homology 
allows apo(a) to compete with PLG for fibrin affinity sites40. 

Additionally, Lp(a) attenuates PLG activation to plasmin by 
the tissue Plasminogen Activator (tPA) in the presence of 
fibrin41. Thus, Lp(a) seems to inhibit fibrinolysis. However, 
there is little evidence to support such a role in vivo. Many 
studies have reported that Lp(a) levels increase in patients 
with acute pathologies, such as myocardial infarction, 
inflammatory bowel disease, and gallbladder fistula33,42-44. 
It is hypothesized that under certain settings, after myo-
cardial infarction for example, Lp(a) acts as a positive 
acute-phase reactant33,45. This is why inflammatory status 
should always be considered when interpreting plasma 
Lp(a) concentrations33,46,47. In contrast, Lp(a) may behave 
as a negative acute-phase reactant in cases of serious 
burns and severe infection, such as visceral leishmaniasis 
or sepsis48-50.

OxPLs play a fundamental role in the early stages of 
atherosclerosis5,51. It has been suggested that a normal 
physiologic role of Lp(a) may be to bind and transport 
such proinflammatory OxPLs. Because of its high content 
with lipoprotein-associated phospholipase A2 (Lp-PLA2), 
which hydrolyzes OxPLs, Lp(a) may also mediate their 
clearance. This occurs through the formation of a covalent 
bond between the KIV10 and KV of the apo(a) fragment 
of Lp(a) and OxPLs5,51.

The pathogenicity of lipoprotein(a)

Convincing evidence has emerged from pathophysi-
ological, epidemiological, and genetic studies on the 
causality of high serum Lp(a) levels as a potent risk factor 
for CHD, transient ischaemic attack, ischaemic stroke or 
recurrent stroke in patients younger than 60 years, periph-
eral artery disease, chronic kidney disease, heart failure, 
venous thromboembolism, calcific aortic valve stenosis, 
as well as retinopathy in patients with diabetes1,4,52-56.

apoB-100, located near the binding site of LDL to its 
receptor16-18. Specific functionalities relevant to the as-
sembly and molecular pathology of Lp(a) are attributable 
to lysine-binding sites (LBSs), which are present in some 
of the KIV domains of apo(a). The lysine-binding site 
in KIV10 is considered to be strong and those in KIV5-
KIV8 weak19. The strong lysine-binding site in KIV10 is 
thought to mediate binding of apo(a)-Lp(a) to fibrin, cell 
surface receptors and extracellular matrix proteins18,20. 
On the other hand, those in KIV5-KIV8 participate in the 
non-covalent interactions with apoB100 that precede 
disulfide bond formation21,22. Importantly, KIV10 also 
contains the site to which a proinflammatory oxidized 
phospholipid (OxPL) is covalently attached23,24.

As mentioned above, plasma Lp(a) levels vary widely 
between individuals and are largely determined by their 
apo(a) size13. There is an inverse relationship between the 
number of KIV2 repeats of apo(a) and the level of Lp(a) 
in plasma25. Unlike other traditional lipoproteins, lifestyle 
changes have little impact on Lp(a) levels1,4. Furthermore, 
Lp(a) levels are stable over time. Thus, Lp(a) levels need only 
be measured once, unless a secondary cause is suspected 
or specific treatment is instituted1,4. 

Unfortunately, little is known about the dominant sites 
and processes accountable for the removal of Lp(a) from 
circulation. Scientists debate between liver and kidneys 
as the dominant clearance site. Spleen and muscles may 
also play a modest role in the clearance process7. Multiple 
receptors for Lp(a) have been identified, with the best 
evidence available for the LDL receptor (LDLR)26-29, various 
plasminogen receptors29,30 and scavenger receptor class 
B member 1 (SRB1)31. Lp(a) concentrations may vary with 
ethnicity and gender4. Traditional thresholds for elevated 
Lp(a) concentrations are > 30 mg/dL (>75 nmol/L), with 
about 20% of the population having Lp(a) concentrations 
> 50 mg/dL (120 nmol/L)1,32.

Physiological functions of Lp(a)

The physiological role of Lp(a) in humans is still not fully 
elucidated. Individuals with extremely low levels of plasma 
Lp(a) present with no disease or deficiency syndromes33. 
In a large, contemporary, general population cohort low 
levels of Lp(a) and corresponding LPA genotypes did not 
associate with any major disease groups, including cancer, 
cancer subtypes and infections. For cardiovascular disease 
(CVD) was even found that observationally and genetically 
low levels of Lp(a) are associated with decreased risk of 
myocardial infarction, aortic valve stenosis, and ischaemic 
stroke34. Several studies have reported that Lp(a) plays 
a significant role in inhibiting angiogenesis and tumor 
growth35-37. Lp(a) due to its homology with PLG may func-
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Moreover, Mendelian randomization and genome 
wide association studies seem to support the role of Lp(a) 
as an independent cardiovascular risk factor1,4,52. Indeed, 
cardiovascular risk assessment with Lp(a) at middle-age 
may include direct Lp(a) measurement or an LPA genetic 
risk score, comprising 43 variants at the LPA gene57. LPA 
genetic risk score is able to discriminate people with the 
hyper-Lp(a) phenotype (i.e., high Lp(a) levels) and high 
risk for CAD even among closely related family members57. 
Hyper-Lp(a) phenotype frequently co-exists with other risk 
factors for CVD, such as familial hypercholesterolaemia or 
apolipoprotein E4-allele58-60. Indeed, hyper-Lp(a) pheno-
type is a frequent finding in FH subjects, especially in the 
presence of CHD58-60.

Individuals with heterozygous familial hypercholes-
terolaemia (HeFH) have almost 2.5-fold increased Lp(a) 
levels compared with controls61. It is suggested that Lp(a) 
has a binding affinity to LDLR but less than LDL due to 
apo(a) mask. Thus, its clearance may be decreased in 
HeFH patients62. Also, Lp(a) levels have been proposed 
as a marker of restenosis after percutaneous transluminal 
coronary angioplasty, saphenous vein bypass graft ath-
erosclerosis and accelerated coronary atherosclerosis of 
cardiac transplantation63.

Moreover, various inflammatory conditions, such as 
rheumatoid arthritis, systemic lupus erythematosus, ac-
quired immunodeficiency syndrome and pulmonary arte-
rial hypertension are associated with high Lp(a) levels64. 
Particularly, in cases of rheumatoid arthritis interleukin-6 
receptor blockade by tocilizumab reverses high Lp(a) lev-
els. This suggests that interleukin-6 may have a potential 
role in regulating Lp(a) plasma levels64. Differences in 
Lp(a) levels have also been observed in pregnancy, an-
other inflammatory condition65. Apart from inflammation, 
Lp(a) correlates inversely with bile acid levels in plasma 
in patients with biliary obstructions. It has been revealed 
that the activation of the Farnesoid X Receptor by bile 
acids suppresses LPA mRNA transcription and therefore 
regulates plasma Lp(a) levels66.

Paradoxically, low levels of Lp(a) could be associated 
with increased risk of diabetes mellitus or bleeding34. One 
hypothesis is that the increased risk for diabetes results 
from the harmful trapping of large apo(a) isoforms in 
hepatocytes or other cells, and thus not from the low levels 
per se34. However, it remains possible that some patients 
with low Lp(a) levels could have increased risk for diabe-
tes or bleeding because of some unidentified genetic or 
acquired predisposing cofactor that acts synergistically 
with low Lp(a)34.

Regarding pathophysiological mechanisms, Lp(a) 
may act via its LDL-like component67,68. Indeed, in some 
patients, a substantial fraction of LDL-cholesterol may be 

transported by Lp(a) particles rather than the archetypical 
LDL particle69. The LDL-like component of Lp(a) undergoes 
different types of modification after entry into the vessel 
wall67,68. The atherogenic actions of LDL in the arterial tis-
sue include the formation of macrophage-derived foam 
cells upon phagocytic uptake of aggregated LDL particles, 
or LDL in which lipid and/or protein components have 
undergone covalent modification, triggering uptake 
by scavenger receptors70. Also, they include the release 
of bioactive proinflammatory lipids exerting both local 
and systemic actions, the formation of extracellular lipid 
deposits, and induction of an adaptive immune response 
with the activation of antigen-specific T-cell responses 
and antibodies70. Additionally, LDL particles induce an 
innate immune response in the arterial wall, that involves 
damage associated molecular patterns (DAMPs). In turn, 
these DAMPs promote recruitment of immuno-inflamma-
tory cells, such as monocyte-macrophages, neutrophils, 
lymphocytes, and dendritic cells, leading to local and 
potentially chronic inflammation. Cell death by apoptosis 
or necrosis can then be induced, thereby contributing to 
necrotic core formation70.

Moreover, Lp(a) may act via the antifibrinolytic/pro-
thrombotic effects of apo(a). Apo(a) is highly homologous 
to PLG and its binding to plasminogen binding sites 
prevents interaction between PLG and tPA. If tPA cannot 
cleave plasminogen to plasmin, then fibrin clots cannot 
be dissolved71. Lp(a) also increases the production and 
activity of tissue plasminogen activator inhibitor-1 (PAI-
1)72. Nonetheless, it is a competitor with both PLG and tPA 
for binding sites on fibrin, which subsequently promote 
a thrombotic state by preventing plasmin-mediated clot 
lysis. Indeed, smaller apo(a) isoforms display higher affin-
ity binding to fibrin73. Thrombosis may be augmented by 
Lp(a) binding and then inhibiting tissue factor pathway 
inhibitor (TFPI), which is a potent inhibitor of the tissue 
factor mediated coagulation cascade74. Also, Lp(a) has 
been demonstrated to regulate platelet activation and 
aggregation triggered by various agonists, as well as to 
associate with others prothrombotic proteins, such as α2-
macroglobulin (α plasmin inhibitor) and serine proteinase 
inhibitor A1 (SERPINA, a tPA inhibitor)75.

Lp(a) is susceptible to oxidative stress, leading to the 
formation of pro-inflammatory and pro-atherogenic 
OxPLs, found on apoB, apo(a), and its lipid phase1,76. 
OxPLs induce proinflammatory signaling in endothelial 
cells, smooth muscle cells, monocytes, macrophages, 
dendritic cells, and platelets77-80. They also mediate plaque-
destabilizing processes, and as they are present in higher 
quantities (70-fold) in plaque than in plasma, are capable 
of stimulating proinflammatory genes leading to vascular 
inflammation77-80. Additionally, OxPLs are pro-apoptotic 
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in high concentrations, accumulate in atherosclerotic 
lesions and play an important role in atherosclerosis77-80. 
High Lp(a) and OxPLs of Lp(a) levels, through their pro-
inflammatory and procalcific activity on valvular inter-
stitial cells, are causally associated with increased valve 
calcification in elderly patients with advanced aortic 
stenosis, a faster hemodynamic progression of aortic 
stenosis, and increased risk of aortic valve replacement 
and death81,82. OxPL plasma levels correlate more strongly 
with high Lp(a) levels and small apo(a) isoforms, or with 
the presence of LPA SNPs rs3798220 and rs10455872, 
which are also correlated with high Lp(a) levels83,84 .This 
association of OxPLs with small Lp(a) particles may at 
least partially explain their enhanced atherogenicity 
and association with higher CVD risk as compared with 
large ones85. Nevertheless, up to 90% of all OxPLs found 
in human lipoproteins are carried on Lp(a), which is not 
necessarily oxidized. Thus, OxPLs may impart additional 
and potent proinflammatory properties to Lp(a) and play 
a key role in Lp(a) functionality5,23. OxPLs are degraded 
into lysophosphatidylcholine (lyso-PC) and oxidized 
free fatty acids, which also manifest proinflammatory 
and proatherogenic effects by Lp-PLA2. Lp-PLA2, among 
other lipoproteins, is associated with Lp(a)85 .However, 
the Lp-PLA2 associated with small apo(a) isoforms has 
a lower catalytic efficiency compared with the Lp-PLA2 
associated with larger apo(a) isoforms. This could be 
another factor that favors the sequestration of plasma 
OxPLs on small apo(a) isoforms, and therefore the strong 
correlation between small apo(a) isoforms and high OxPL 
levels in plasma85.

Another biological property of Lp(a) that makes it a 
proatherogenic and a proinflammatory lipoprotein, is 
monocyte chemoattractant protein-1 (MCP-1). MCP-1 
is a major chemokine involved in the development of 
atherosclerosis via monocyte recruitment to the vascular 
wall86. Lp(a) in plasma may serve as a carrier for MCP-1, 
and OxPLs are major determinants of the MCP-1 bind-
ing86. Once Lp(a) has entered the arterial intima with 
its associated MCP-1, it may subsequently enhance the 
trafficking of monocytes to the vascular wall, and thereby 
exacerbate lesion progression86. Furthermore, Lp(a) pro-
motes the adhesion and transendothelial migration of 
monocytes, through the interaction of apo(a) with the 
b2-integrin Mac-187.

Last but not least, autotaxin (ATX) is another important 
molecule associated with Lp(a). ATX preferentially trans-
ported by Lp(a) catalyzes the hydrolysis of lyso-PC into 
lysophosphatidic acid (lyso-PA)88. As mentioned previously, 
lyso-PC is formed by hydrolysis of OxPLs, mediated by the 
Lp(a)-associated Lp-PLA285. Lyso-PA stimulates complex 
intracellular signaling pathways. As a result, it generates 

various cellular responses, such as inflammatory cytokine 
release, monocyte attraction and adhesion, abnormal en-
dothelial cell behavior, endothelial permeability, and LDL 
uptake for plaque formation and participates in different 
pathophysiological conditions. Inflammation, atherogen-
esis and calcific aortic valve stenosis are among them88,89.

All these pathophysiological mechanisms of Lp(a), 
including proatherogenic, proinflammatory and antifi-
brinolytic mechanisms, probably contribute to cardio-
vascular risk in various but different extent in all age 
groups90. However, it is proposed that specific properties 
may predominate and manifest clinically in different age 
groups, with antifibrinolytic effects mainly in children, 
proinflammatory effects in young adults, and proathero-
genic effects in the elderly90.

Effect of hypolipidemic treatment on Lp(a)

Τhere are neither known non-pharmacologic methods, 
nor any specific pharmacological approaches able to lower 
Lp(a) concentrations to the extent proposed to achieve 
cardiovascular benefits91. 

The effects of currently used therapeutic agents on 
circulating levels of Lp(a) are not well understood. Some 
of them, however, have a limited but clear effect on Lp(a). 
Lipoprotein apheresis is highly effective in reducing Lp(a) 
levels (25-40%)92. Both statins93 and low-saturated fat 
diets94 raise Lp(a) levels by approximately 10-30%. On 
the other hand, fibrates95, and most hormones (except 
growth hormone)32,96 may reduce Lp(a) levels. Niacin97, 
mipomersen98, lomitapide99, proprotein convertase subtili-
sin kexin 9 (PCSK9)100-102 and (cholesteryl transfer protein) 
CETP inhibitors103, aspirin32, antibodies to interleukin-632, 
nutraceuticals104-107, tibolone108 and ezetimibe109, also, de-
crease Lp(a) levels. Vitamin C110 and bile acid sequestrants111 
have a neutral effect on plasma Lp(a) levels. 

In the era of RNA-based therapies, novel medicines 
aimed at substantially lowering Lp(a) levels, using anti-
sense oligonucleotides (ASOs) and small interfering RNAs 
(siRNA), are currently in clinical development91. ASOs 
targeting apo(a) have shown much promise with reduc-
tions up to 92.4% in Lp(a) in a dose dependent fashion 
and a favorable safety profile3,112,113. AMG 890 (olpasiran), 
a siRNA, reduced Lp(a) with observed maximal percent 
reductions of >90% in a phase I study114.

In the following table, we review the established and 
emerging therapeutic agents that affect Lp(a) levels. (Table)

Conclusion and future perspective

Lp(a) offers a fresh look at atherosclerotic CVD, as 
high Lp(a) levels seem to be associated with an increased 
risk of CVD. On the contrary, the role of low Lp(a) levels 
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in humans is still not fully elucidated. Several mecha-
nisms to explain the atherogenicity of Lp(a) have been 
proposed so far, including primarily its LDL and apo(a) 
components and associated OxPLs. However, since we 
have no commercially available drugs that selectively 
reduce high Lp(a) levels, it is not possible to draw safe 
conclusions on the clinical importance for reducing 
Lp(a) as well as for the exact pathophysiological role 
of this lipoprotein.
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Table. Current and emerging Lipoprotein(a)-lowering therapies

Lipoprotein(a)-lowering therapy Lipoprotein(a) effect

Lipoprotein apheresis Acute decrement of 70% to 75%, but regular apheresis can translate into a 
mean Lp(a) reduction between 25% to 40%.

Statins Most statins may increase Lp(a) on average 8% to 24%, although significant 
heterogeneity in response is present.

Low-saturated fat diets Potential increment between 10% to 20%.

Fibrates Potent reduction between 10% to 40%. However, they are not the drugs of 
choice for managing Lp(a) elevations.

Sex hormone therapies (e.g. estrogen) Lp(a) reduction by approximately 20%. However, hormone replacement 
therapy cannot be recommended for the sole purpose of lowering Lp(a).

Tibolone Lp(a) reduction between 13,2% and 29%.

Vitamin C Neutral effect on Lp(a) plasma levels.

Bile acid sequestrants Neutral effect on Lp(a) plasma levels.

Nicotinic acid (niacin) Potential Lp(a) lowering effect between 20% to 30%, but it is limited by side 
effects.

Ezetimibe As monotherapy provides a modest 7% reduction in Lp(a) levels.

Mipomersen 20%-40% reduction, although the product is not clinically available.

Lomitapide 17% reduction.

Inhibitors of cholesteryl transfer protein (CETP inhibitors) 25%-40% reduction, although not approved for clinical use.

Thyromimetic eprotirome Lp(a) decrement between 20% to 30%, although not approved for clinical use 
(investigational agent).

Aspirin Modest reduction up to 30%.

Antibodies to interleukin-6 Modest reduction up to 30%.

Nutraceuticals (L-carnitine, coenzyme Q10, xuezhikang) Potential Lp(a)-lowering effects between 10% to 30%.

Proprotein convertase subtilisin kexin 9 (PCSK9) inhibitors:
•	 Monoclonal antibodies: evolocumab, alirocumab
•	 Antisense: inclisiran

•	 Mean reduction of Lp(a) levels between 14% to 30%.
•	 Mean reduction of Lp(a) levels between 15% to 25%.

Antisense oligonucleotides (ASOs):
•	 ISIS-Apo(a)RX
•	 IONIS-Apo(a)RX
•	 IONIS-Apo(a)LRX (pelacarsen=TQJ230)

•	 Mean percentage decreases in plasma Lp(a) concentrations of 40% to 78%.
•	 Mean percentage decreases in plasma Lp(a) concentrations of 67% to 72%.
•	 Lp(a) reductions up to 92%.

Small interfering RNAs (siRNAs):
•	 Olpasiran (AMG890) •	 Observed maximum reduction of >90%.
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στην ανθρώπινη φυσιολογία και παθολογία
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Τα τελευταία χρόνια, παρατηρείται ένα αμείωτο ενδιαφέρον για τη λιποπρωτεΐνη(α). Τα αυξημένα επίπεδα 
αυτής της λιποπρωτεΐνης έχουν προταθεί ως ανεξάρτητος αιτιολογικός παράγοντας κινδύνου για την εμφάνιση 
αθηρωμάτωσης και παθήσεων του καρδιαγγειακού συστήματος. Το κύριο ερώτημα που μένει να απαντηθεί, 
ωστόσο, είναι το κλινικό όφελος, που πιθανά θα προκύψει, από τη μείωση των επιπέδων της λιποπρωτεΐνης(α). 
Η απάντηση σε αυτό το ερώτημα θα συμβάλλει, μεταξύ άλλων, και στον εμπλουτισμό των γνώσεών μας για 
τον ακριβή παθοφυσιολογικό της ρόλο. Στο παρόν άρθρο, συνοψίζουμε και παρουσιάζουμε την υπάρχουσα 
βιβλιογραφία αναφορικά με τη δομή, το μεταβολισμό καθώς και την παθογένεια της λιποπρωτεΐνης(α).
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